PRODUCT: Nitro-Methane Fuel Supercharger Restraint Devices

1.0 GENERAL INFORMATION

1.1 This SFI Specification establishes uniform test procedures and minimum standards for evaluating and determining performance capabilities for Nitro-Methane Fuel Supercharger Restraint Devices used by individuals engaged in competitive motorsports.

1.2 The procedures, test evaluations and standards contained herein, are intended only as minimum guidelines for construction and evaluation of products. Certification that products meet such minimum standards is made by the product manufacturer and products are not certified, endorsed or approved by SFI under this program.

1.3 Use of the "This Manufacturer Certifies That This Product Meets SFI Specification 14.3" logo/designation, the authorized artwork style, or conventional lettering by a manufacturer, on a subject product, is intended only to indicate that the manufacturer of the product has represented that they have submitted the product to the recommended tests, with positive results, in compliance with the standards established herein.

1.4 This SFI Specification requires a demonstration that the product of a manufacturer meets or exceeds the requirements when the manufacturer enters the program; and on a periodic basis thereafter. Any manufacturer may participate in the program by providing Nitro-Methane Fuel Supercharger Restraint Devices that meet or exceed the SFI Specification 14.3 test standards, by complying with the requirements of the SFI Specification 14.3 program, and by signing a licensing agreement with the SFI Foundation, Inc.
1.5 Compliance with this specification is entirely voluntary. However, when a manufacturer provides Nitro-Methane Fuel Supercharger Restraint Devices in compliance with all requirements of the SFI Specification 14.3 and enters into the licensing agreement with the SFI Foundation, Inc., they may certify that compliance with such standards is in accordance with the guidelines established herein.

1.6 Manufacturers wishing to participate in the program, in addition to the other requirements of this specification, must label each of their products with the manufacturer's name, trademark or symbol as well as the date of manufacture of the product. The manufacturer's name, trademark, or symbol, and manufacturing date must appear on each plate or tab of the restraint assembly. This dating is in addition to the required conformance label “punch-out” date of section 11.0.

1.7 No manufacturer may display the SFI logo/designation on their product unless the manufacturer has signed a licensing agreement with SFI and has successfully complied with all the requirements of this specification and the self-certification program.

2.0 DEFINITIONS

2.1 Nitro-Methane Fuel Supercharger Restraint Devices are used to constrain the supercharger and injector device in the event of separation from the engine due to an explosion or mechanical failure.

2.2 Nitro-Methane Fuel Supercharger Restraint Devices shall be inspected every two years by the original manufacturer for recertification. All engine attachment straps made from material that is sensitive to ultraviolet light shall be replaced at that time.

2.3 Any restraint device pertaining to this specification shall remain as constructed by the original manufacturer and not modified.

3.0 CONSTRUCTION

The restraint device shall incorporate a containment configuration to envelop the supercharger. This shall be called the enclosure segment. The restraint device shall have engine attachment straps used to constrain the supercharger enclosure in the event of detachment from the engine. The attachment straps shall be secured to the engine with each strap having its own attachment. A minimum of five attachment straps shall be used, one on each corner of the supercharger and one on the rear. The injector shall be constrained by a minimum of four (4) attachment points.
3.1 ENGINE ATTACHMENT STRAPS

Straps shall be made of material in conformance with Military Specification MIL-W-4088 "Webbing, Textile, Woven Nylon" Type 26 rated at a minimum of 15,000 lbs (6,800kg) tensile strength and a minimum elongation of 20 percent at the test load or an equivalent as stated by the webbing manufacturer. If the strap material used is subject to fire damage, the straps shall have sheathing, completely covering the otherwise exposed straps, which the manufacturer represents to be fire retardant.

3.2 ATTACHMENT STRAP ENGINE BRACKETS

The bracket for each engine attachment strap shall be connected to the engine by a minimum of two 3/8 inch (10mm) SAE Grade 5 (Class 9.8) bolts or studs. The brackets can also be integral to a one piece flange running the full length of the exhaust header. This method shall use all header bolts or studs through the flange for connection to the engine. Any bracket shall be separate from the exhaust header. Welding of attachments to the exhaust header is not acceptable.

3.3 DUAL ANCHOR PLATES

This type shall have an anchor plate between the lower surface of the injector body and the upper surface of the supercharger case, and a second anchor plate between the lower surface of the supercharger case and the upper surface of the manifold. The enclosure segment shall be between the upper and lower anchor plates connected with the containment straps.

3.3.1 ANCHOR PLATES

The upper plate shall have a minimum of five individual attachment points for the engine attachment straps described in paragraphs 3.0 thru 3.2; a minimum of four individual attachment points for the containment straps between the plates (one in the front, one on each side and one in the rear); and a minimum of four attachment points for the injector strap assembly, (two on each side, front and back). The lower plate shall have a minimum of four attachment points for the containment straps between the plates (one in the front, one on each side and one in rear). The plates shall be made of a material capable of withstanding a minimum load of 10,000 lbs (4,500 kg).

3.3.2 CONTAINMENT STRAPS

The containment straps shall be permanently attached to the supercharger blanket and be used to connect the upper and lower anchor plates, securing the blanket to the anchor plates. The straps shall be made of a material with a minimum elongation of 20 percent. (See Figure A)
3.3.3 SUPERCHARGER BLANKET

The supercharger blanket shall be constructed of ballistic material, and cover 90 percent of each side and rear of the supercharger housing. The ballistic material shall be a continuous blanket that encompasses the supercharger and is connected at the ends through the front cover/drive retention device. The blanket shall be secured to the anchor plates at a minimum of one attachment point on each side and a minimum of one attachment point in the rear. The blanket shall fit snugly around the supercharger.

A. FRONT COVER/DRIVE RETENTION DEVICE

The ballistic material shall cover 40% of the front cover and the drive flange (See Figure B, crosshatch area). The retention device shall attach to the supercharger blanket straps at a minimum of four points. The front containment strap shall be attached to the retention device at a minimum of one point. The retention device shall retain the front cover and the supercharger drive.
B. SUPERCHARGER BLANKET STRAPS

The purpose of the blanket straps is to maintain the blanket and the front cover/drive retention device around the supercharger in the event of an explosion. The blanket shall be connected to itself with a minimum of two straps. One strap shall be located at the top of the supercharger and one at the bottom. The straps shall encompass the length of the blanket around the supercharger in the horizontal plane. The strap connection device shall be capable of sustaining the load imposed on the strap.

3.3.4 INJECTOR STRAP ASSEMBLY

The injector strap assembly is used to constrain the injector device in the event of an explosion with a minimum of four (4) attachment points from the injector device to the upper plate.

4.0 MODEL CLASSIFICATION

Any variation of the original design, i.e. construction, anchor plate(s), ballistic material, straps or mounting method is considered a model change.
5.0 TESTING

5.1 TENSILE STRENGTH

5.1.1 SAMPLES

Test samples shall be fully processed new restraint devices which are representative of restraint devices currently produced or to be produced. All necessary mounting hardware along with mounting instructions shall be supplied with the restraint device.

5.1.2 APPARATUS

A. TEST MACHINE

The test machine shall be capable of applying a minimum tensile load of 36,000 lbs (16,330 kg) with an excursion travel of four to five inches per minute (10.2-12.7 cm/min), and shall have adequate instrumentation to verify the test load. The test machine shall also be in calibration and traceable to the National Bureau of Standards.

B. TEST FIXTURE

The test fixture shall duplicate the mounting method of the restraint device and be capable of withstanding the applied load.

5.1.3 PROCEDURES

A. ENGINE ATTACHMENT STRAPS

1. The restraint device shall be mounted to the test fixture per manufacturer’s instructions with the supplied attachment hardware. The side attachment straps shall be connected and subjected to the load.

2. The test fixture shall be installed into the test machine. The strap attachments shall be mounted and oriented in the same position and connected as in an actual vehicle.

3. Using an excursion rate between four and five inches per minute (10.2-12.7 cm/min), apply an increasing load to the restraint device. Continue until a load of 24,800 lbs (11,250 kg) is applied. Hold at that level for ten seconds, then release the load.
B. REAR ENGINE ATTACHMENT STRAP

This test is only necessary if the rear attachment strap is not identical to the side attachment straps or if it utilizes a different connection device or adjustment hardware.

1. In each head of the test machine, mount one end of the rear strap. If the strap has a connection device and/or adjustment hardware, connect and adjust per manufacturer's instructions. The strap, strap hardware and heads shall be in axial alignment.

2. Using an excursion rate between four and five inches per minute (10.2-12.7 cm/min), apply an increasing load to the strap. Continue until a load of 6,200 lbs (2,810 kg) is applied. Hold at that level for ten seconds, then release the load.

C. ENCLOSURE SEGMENT

1. The enclosure segment of the supercharger restraint device shall be mounted to the test fixture per manufacturer's instructions with the supplied attachment hardware.

2. A test fixture designed to simulate the supercharger and the injector body shall be attached to the upper (moving) crosshead. Also, a fixture representing the supercharger manifold and the supercharger shall be mounted to the lower (static) crosshead. (See Figure C)

3. Using an excursion rate between four and five inches per minute (10.2-12.7 cm/min), apply an increasing load to the free end of the enclosure segment. Continue until a load of 10,000 lbs (4,530 kg) is applied. Hold at that level for ten seconds, then release the load.
D. INJECTOR STRAP ASSEMBLY

1. The upper anchor plate shall be connected to the test fixture. The injector strap assembly shall be mounted to the upper anchor plate per manufacturer’s instructions with the supplied attachment hardware.

2. A test fixture designed to simulate the supercharger and the injector device shall be attached to the upper (moving) crosshead. Also, a fixture representing the upper containment plate and the supercharger shall be mounted to the lower (static) crosshead. (See Figure D)

3. Using an excursion rate between four and five inches per minute (10.2-12.7 cm/min), apply an increasing load to the injector strap assembly. Continue until a load of 2,500 lbs (1,130 kg) is applied. Hold at that level for ten seconds, then release the load.
E. SUPERCHARGER BLANKET STRAP
FRONT COVER/DRIVE RETENTION DEVICE

If more than one variation of blanket strap is used, then all variations shall be tested.

1. A test fixture designed to simulate the supercharger drive shall be attached to the upper (moving) crosshead. Also, a fixture representing the supercharger rear cover shall be mounted to the lower (static) crosshead. The supercharger blanket and/or the front cover/retention device shall be placed over the supercharger drive simulator. The supercharger blanket and/or straps shall be placed around the supercharger rear cover. If the straps have a connection device and/or adjustment hardware, connect and adjust per manufacturer's instructions. (See Figure E)

2. Using an excursion rate between four and five inches per minute (10.2-12.7 cm/min), apply an increasing load to the strap. Continue until a load of 10,000 lbs (4,536 kg) is applied. Hold at that level for ten seconds, then release the load.
5.2 PENETRATION RESISTANCE

This test is based on Military Standard 662D, "Ballistic Test for Armor" (MIL-STD-662D).

5.2.1 SAMPLES

One sample of the ballistic material used in the supercharger blanket, the front cover/drive retention device and the injector blanket, 11 by 14 ±1 inch (27.9 by 35.6 ±2.5 centimeters) shall be supplied. The sample shall have the identical construction of the supercharger restraint device that is being evaluated.

5.2.2 APPARATUS

The apparatus shall be as specified in MIL-STD-662D.

A. PROJECTILE

Caliber .22 - Type 2, fragment simulators conforming to MIL-P-46593A shall be used.
5.2.3 PROCEDURES

The sample shall be tested in accordance with MIL-STD-662D for the Ballistic Limit, V\textsubscript{50} BL(P). The maximum velocity span shall be 150 feet per second (fps) (46 meters per second (mps)). The ballistic resistance of the sample shall be greater than or equal to a V\textsubscript{50} BL(P) of 1385 fps (425 mps).

5.2.4 INTERPRET RESULTS

The V\textsubscript{50} BL(P) shall be calculated by taking the arithmetic mean of the two highest partial, and the two lowest complete, penetration impact velocities within the allowable velocity span.

6.0 PROOF OF COMPLIANCE

Nitro-Methane Fuel Supercharger Restraint Devices manufacturers are required to provide the following information to enroll in this program:

6.1 TEST RESULTS

Test results shall be documented in a test report.

6.1.1 TENSILE STRENGTH

The restraint device shall pass all applicable tensile strength tests to be acceptable. Each component shall pass the tensile strength test if it is able to maintain the test load for ten seconds.

6.2.1 PENETRATION RESISTANCE

The restraint device shall pass all applicable penetration resistance tests to be acceptable. Each component will be required to pass the designated test requirement.

7.0 TEST REPORTS

A separate test report, or set of test reports if required, shall be submitted for each product model. If more than one test facility is required to complete all necessary tests, then a separate test report shall be submitted from each one. A test report shall be submitted for each component, if tested separately. The test facility shall assign a unique number to each test report. This number along with the report date and page number shall appear on each page. Each test report shall include:
7.1 RELEVANT INFORMATION

7.1.1 Manufacturer's name, contact name, address and telephone number.

7.1.2 Name, address and telephone number of the test facility.

7.1.3 Name and signature of the responsible test supervisor.

7.1.4 Actual date of the test.

7.1.5 Specification number and effective date.

7.1.6 Product name, description and model designation.

7.1.7 Component name and description.

7.1.8 Photographs of the submitted assembly, pre and post-test photographs of submitted ballistic samples.

7.2 TESTS

Each test conducted shall be listed showing the test name, apparatus used, procedure used and test results obtained along with any other appropriate information.

7.3 AUTHENTICATION

Test reports shall be authenticated and stamped by a Professional Engineer who is registered in the state in which the testing is conducted. If necessary, SFI may allow an equivalent entity to provide authentication.

8.0 INITIAL DESIGN VALIDATION

To receive initial recognition from SFI as a participant in the SFI Specification 14.3 Program, the manufacturer must submit to SFI all information delineated in the Proof of Compliance section. This information shall be provided for each Nitro-Methane Fuel Supercharger Restraint Devices model offered by the applicant that is to be included in the program. Any change in design, materials and/or methods of manufacturing not specifically excluded is considered a model change and, therefore, requires initial design validation.

9.0 PERIODIC REVALIDATION

Test reports with successful test results must be submitted to SFI at least once every 24 month period following the date of the initial design validation test for each model of Nitro-Methane Fuel Supercharger Restraint Devices manufactured by the participant. If multiple
test reports are required to obtain all test results, then the earliest test date shall be used to

determine when the periodic revalidation reports are due.

10.0 CERTIFICATION OF COMPLIANCE

Upon demonstration of successful compliance with all the requirements of the specification
and the self-certification program and upon entering the licensing agreement with SFI, the
manufacturer may advertise, present and offer the Nitro-Methane Fuel Supercharger
Restraint Devices for sale with the representation that their product meets the SFI
Specification 14.3. Continuing certification is contingent upon the following additional
considerations: (1) the product shall be resubmitted for testing following any change in
design, materials and/or methods of manufacturing not specifically excluded, and (2)
periodic revalidation test reports are submitted when due to SFI.

11.0 CONFORMANCE LABELS

The conformance label is a "punch out" label. A label shall be attached to each attachment
strap and blanket, facing outward. The month and year of manufacturer shall be punched
in each label with an 1/8" hole punch. For recertification, the old labels shall be removed
and the foregoing procedure shall be followed using new labels.

12.0 DECERTIFICATION

Participating manufacturers are subject to decertification when not in compliance with the
requirements of this program or when their products are not in compliance with the
requirements of this specification. Decertification will provide SFI the right to effect any and
all remedies which are available to SFI in the licensing agreement.

13.0 APPEAL PROCEDURE

In the event of decertification, the manufacturer is entitled to an appeal of the decision of
SFI. Requests for appeal must be received by SFI no later than thirty days following receipt
of the notice of decertification. Appeals of such decisions will be heard at the next meeting
of the Board of Directors of SFI.

14.0 STATEMENT OF LIMITATIONS

Testing procedures and/or standards contained in this specification are intended for use
only as a guide in determining compliance with the minimum performance requirements as
defined herein. The granting and assignment of the "This Manufacturer Certifies That This
Product Meets SFI Specification 14.3" logo/designation is in no way an endorsement or
certification of product performance or reliability by SFI. SFI, its officers, directors and/or
members assume no responsibility, legal or otherwise, for failure or malfunctions of a
product under this program.
15.0 COSTS

All costs involved in this program will be absorbed by the submitting manufacturer.

16.0 COMPLIANCE PERIOD

As this specification is revised to reflect changes in technology and/or field conditions, to remain current, participating manufacturers in the SFI Specification 14.3, Nitro-Methane Fuel Supercharger Restraint Device, Program, must demonstrate full compliance with the requirements of this specification within ninety (90) days of the latest effective date.

* Original Issue: October 30, 1995
Reviewed January 31, 1997
Reviewed: May 20, 1998
Revised: July 28, 1998
Reviewed: February 4, 1999
Revised: August 30, 2001
Revised: March 23, 2004
Reviewed: December 8, 2007
Reviewed: December 12, 2009
Reviewed: December 3, 2011
Reviewed: December 12, 2013
Revised: February 26, 2014
Reviewed: December 10, 2015
Reviewed: December 8, 2016
Revised: August 25, 2017
Reviewed: December 7, 2017
Reviewed: December 12, 2019
Edited: March 26, 2020